Dihydropyridine ligand binding decreases earlier in adolescent than in infant swine after global cerebral ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Voltage-dependent calcium channels (VDCCs) are thought to play a major role in the alteration of calcium homeostasis during ischemia. Tissue functional state as well as responsiveness to therapy with calcium channel blockers may be a function of regional changes in the density of VDCCs. This study determined whether VDCCs are altered by global ischemia in infant and adolescent swine. METHODS We employed the radioligand 3HPN200-110 to quantify the binding characteristics of VDCCs in cerebral cortex, caudate, and hippocampus by equilibrium binding analysis. Adolescent and infant pigs underwent 3, 5, 10, and 20 minutes of global cerebral ischemia without reperfusion by ligation of the brachiocephalic and left subclavian arteries combined with hypotension to a mean arterial blood pressure of 50 mm Hg. Brain cortex, hippocampus, and caudate samples were taken during ischemia and frozen immediately in liquid nitrogen, and crude synaptosomal membranes were isolated by differential centrifugation/filtration. 3HPN200-110 equilibrium binding assays were performed in the presence or absence of 1.0 mumol/L unlabeled nitrendipine to determine total and nonspecific binding. RESULTS Infant cortex maximal binding (Bmax) increased to 176% of control after 5 minutes of global cerebral ischemia and remained significantly elevated (172% of control) after 10 minutes before falling to near control levels by 20 minutes. Adolescent cortex Bmax increased to 157% of control levels after 5 minutes but did not remain elevated, falling to 131% of control by 10 minutes and near control by 20 minutes. Infant caudate and hippocampus binding were significantly elevated after 10 (124% and 149% of control, respectively) and 20 (115% and 120% of control, respectively) minutes of ischemia. Adolescent caudate and hippocampus binding was either not significantly different from control levels (hippocampus at 10 minutes) or less than control after 10 and 20 minutes of global cerebral ischemia. The decrease in binding following the initial upregulation, which appeared earlier in the adolescent than the infant pigs, may indicate decreased tolerance to ischemia in the adolescent. CONCLUSIONS The binding of 3HPN200-110 in brain is altered during 20 minutes of global cerebral ischemia, and these changes are region- and age-dependent.
منابع مشابه
Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms
Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...
متن کاملEffect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats
Objective(s):Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment ...
متن کاملEffect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat
Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...
متن کاملPositive Effects of Post-ischemic Forced Treadmill Training on Sensorimotor and Learning Outcomes Following Transient Global Cerebral Ischemia
ABSTRACT Background and objectives: Stroke is one of the leading causes of death and long-term acquired disability. It is of great importance to seek ways for improving motor, sensory, and cognitive function after stroke and brain injury. In this regard, therapeutic exercise is the most commonly used method of rehabilitation that can significantly reduce the severity of functional ...
متن کاملCurcumin Improves Memory Impairment and Restores Irregular Neuronal Distribution In the Hippocampal CA1 Region After Global Cerebral Ischemia in Male Rats
Purpose: Global Cerebral Ischemia (GCI) causes neuronal damage that leads to neurological and cognitive impairments. Curcumin has anti-inflammatory, antioxidant and neuroprotective properties which makes it a potential candidate for improving GCI-induced impairments. The aim of this study was to investigate the effects of curcumin on the neurological and memory deficits as well as spatial neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 25 10 شماره
صفحات -
تاریخ انتشار 1994